Part Number Hot Search : 
00002 74ACT08M MC145 P43AA HCC4543B MT3S0 LC35256 MAX5028
Product Description
Full Text Search
 

To Download IRF7902 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 07/10/06 IRF7902pbf hexfet   power mosfet so-8 benefits very low r ds(on) at 4.5v v gs  low gate charge  fully characterized avalanche voltage and current 20v v gs max. gate rating  improved body diode reverse recovery  lead-free applications dual so-8 mosfet for polconverters in notebook computers, servers, graphics cards, game consoles and set-top box v dss i d 30v q1 22.6m @v gs = 10v 6.4a q2 14.4m @v gs = 10v 9.7a r ds(on) max absolute maximum ratings parameter q1 max. q2 max. units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v 6.4 9.7 i d @ t a = 70c continuous drain current, v gs @ 10v 5.1 7.8 a i dm pulsed drain current 51 78 p d @t a = 25c power dissipation 1.4 2.0 w p d @t a = 70c power dissipation 0.9 1.3 linear derating factor 0.011 0.016 w/c t j operating junction and c t stg storage temperature range thermal resistance parameter q1 max. q2 max. units r jl junction-to-drain lead  20 20 c/w r ja junction-to-ambient  90 62.5 20 30 -55 to + 150          downloaded from: http:///
  2 www.irf.com static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage q1&q2 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient q1 CCC 0.023 CCC v/c q2 CCC 0.025 CCC q1 CCC 18.1 22.6 r ds(on) static drain-to-source on-resistance CCC 23.8 29.7 m ? q2 CCC 11.5 14.4 CCC 14.9 18.7 v gs(th) gate threshold voltage q1&q2 1.35 1.8 2.25 v ? v gs(th) / ? t j gate threshold voltage coefficient q1 CCC -4.7 CCC mv/c q2 CCC -5.9 CCC i dss drain-to-source leakage current q1&q2 CCC CCC 1.0 a q1&q2 CCC CCC 150 i gss gate-to-source forward leakage q1&q2 CCC CCC 100 na gate-to-source reverse leakage q1&q2 CCC CCC -100 gfs forward transconductance q1 13 CCC CCC s q2 19 CCC CCC q g total gate charge q1 CCC 4.6 6.9 q2 CCC 6.5 9.8 q gs1 pre-vth gate-to-source charge q1 CCC 0.9 CCC q1 q2 CCC 1.4 CCC v ds = 15v q gs2 post-vth gate-to-source charge q1 CCC 0.5 CCC nc v gs = 4.5v, i d = 5.1a q2 CCC 0.8 CCC q gd gate-to-drain charge q1 CCC 1.8 CCC q2 q2 CCC 2.3 CCC v ds = 15v q godr gate charge overdrive q1 CCC 1.4 CCC v gs = 4.5v, i d = 7.8a q2 CCC 2.0 CCC q sw switch charge (q gs2 + q gd ) q1 CCC 2.3 CCC q2 CCC 3.1 CCC q oss output charge q1 CCC 3.0 CCC nc q2 CCC 4.4 CCC r g gate resistance q1 CCC 3.1 4.9 ? q2 CCC 3.1 4.9 t d(on) turn-on delay time q1 CCC 7.4 CCC q2 CCC 6.1 CCC t r rise time q1 CCC 8.2 CCC i d = 5.1a q2 CCC 8.6 CCC ns t d(off) turn-off delay time q1 CCC 8.4 CCC q2 CCC 8.2 CCC t f fall time q1 CCC 3.4 CCC i d = 7.8a q2 CCC 3.3 CCC c iss input capacitance q1 CCC 580 CCC q2 CCC 900 CCC c oss output capacitance q1 CCC 130 CCC pf q2 CCC 190 CCC c rss reverse transfer capacitance q1 CCC 74 CCC q2 CCC 86 CCC avalanche characteristics parameter q1 max. q2 max. units e as single pulse avalanche energy 3.4 7.3 mj i ar avalanche current  5.1 7.8 a diode characteristics parameter min. typ. max. units i s continuous source current q1 CCC CCC 1.7 a (body diode) q2 CCC CCC 2.5 i sm pulsed source current q1 CCC CCC 51 a (body diode)  q2 CCC CCC 78 v sd diode forward voltage q1 CCC CCC 1.0 v q2 CCC CCC 1.0 t rr reverse recovery time q1 CCC 7.8 12 ns q2 CCC 12 18 q rr reverse recovery charge q1 CCC 1.5 2.3 nc q2 CCC 3.1 4.7 conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 6.4a  mosfet symbol v ds = 16v, v gs = 0v q1 v gs = 20v v gs = -20v v ds = 24v, v gs = 0v conditions q2 q1 t j = 25c, i f = 5.1a, v dd = 15v, di/dt = 100a/s  t j = 25c, i s = 5.1a, v gs = 0v  showing the integral reverse p-n junction diode. t j = 25c, i s = 7.8a, v gs = 0v  q2 t j = 25c, i f = 7.8a, v dd = 15v, di/dt = 100a/s  v dd = 15v, v gs = 4.5v CCC v ds = 15v clamped inductive load v gs = 0v ? = 1.0mhz typ. CCC v gs = 4.5v, i d = 5.1a  v gs = 4.5v, i d = 7.8a  v ds = 15v, i d = 7.8a v dd = 15v, v gs = 4.5v v gs = 10v, i d = 9.7a  v ds = v gs , i d = 25a v ds = 15v, i d = 5.1a v ds = 24v, v gs = 0v, t j = 125c downloaded from: http:///
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics q1 - control fet q2 - synchronous fet typical characteristics fig 3. typical output characteristics fig 4. typical output characteristics fig 5. typical transfer characteristics fig 6. typical transfer characteristics 0.1 1 10 100 100 0 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 60s pulse width tj = 25c 2.5v 1 2 3 4 5 6 v gs , gate-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v 60s pulse width 1 2 3 4 5 6 v gs , gate-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v 60s pulse width 0.1 1 10 100 100 0 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 60s pulse width tj = 25c 2.5v 0.1 1 10 100 100 0 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60s pulse width tj = 150c vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v 0.1 1 10 100 100 0 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60s pulse width tj = 150c vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.5v downloaded from: http:///
  4 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 7. typical capacitance vs. drain-to-source voltage fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical gate charge vs. gate-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage fig 11. maximum safe operating area fig 12. maximum safe operating area 1 10 10 0 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 10 100 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) t a = 25c tj = 150c single pulse 100sec 1msec 10msec 100msec 0123456 q g , total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v v ds = 6.0v i d = 5.1a 1 10 10 0 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 10 100 v ds , drain-to-source voltage (v) 0.001 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) t a = 25c tj = 150c single pulse 100sec 1msec 10msec 100msec 012345678 q g , total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v v ds = 6.0v i d = 7.8a downloaded from: http:///
  www.irf.com 5 fig 17. typical on-resistance vs.gate voltage q1 - control fet q2 - synchronous fet typical characteristics fig 13. normalized on-resistance vs. temperature fig 14. normalized on-resistance vs. temperature fig 15. typical source-drain diode forward voltage fig 16. typical source-drain diode forward voltage fig 18. typical on-resistance vs.gate voltage -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 6.4a v gs = 10v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 2 4 6 8 10 12 14 16 v gs, gate -to -source voltage (v) 10 20 30 40 50 60 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 6.4a t j = 25c t j = 125c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 9.7a v gs = 10v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 2 4 6 8 10 12 14 16 v gs, gate -to -source voltage (v) 0 10 20 30 40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 9.7a t j = 25c t j = 125c downloaded from: http:///
  6 www.irf.com q1 - control fet q2 - synchronous fet typical characteristics fig 19. maximum drain current vs. ambient temperature fig 20. maximum drain current vs. ambient temperature fig 21. threshold voltage vs. temperature fig 22. threshold voltage vs. temperature fig 23. maximum avalanche energy vs. drain current fig 24. maximum avalanche energy vs. drain current 25 50 75 100 125 150 t a , ambient temperature (c) 0 1 2 3 4 5 6 7 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 2 4 6 8 10 12 14 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 2.0a 2.4a bottom 6.4a 25 50 75 100 125 150 t a , ambient temperature (c) 0 2 4 6 8 10 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 5 10 15 20 25 30 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 2.4a 2.8a bottom 7.8a downloaded from: http:///
  www.irf.com 7 fig 25. maximum effective transient thermal impedance, junction-to-ambient (q1) fig 26. maximum effective transient thermal impedance, junction-to-ambient (q2) fig 27. layout diagram 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 100 1000 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 3.031518 0.000064 7.306226 0.005879 51.39689 0.44864 28.2607 12.37 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci= i / ri ci= i / ri a 4 4 r 4 r 4 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc ri (c/w) i (sec) 2.445866 0.000118 9.382382 0.020778 33.63681 0.70843 17.05217 24.5 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci= i / ri ci= i / ri a 4 4 r 4 r 4 downloaded from: http:///
  8 www.irf.com fig 30a. switching time test circuit fig 30b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 29b. unclamped inductive waveforms fig 29a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 31a. gate charge test circuit fig 31b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 28. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"         d.u.t. v d s i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - downloaded from: http:///
  www.irf.com 9 so-8 package outlinedimensions are shown in milimeters (inches) so-8 part marking information 

  


  
   
   
  
  
  
    

      

 
 
 

      

  



 



 
  



 
 

 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                          

       

    


    !"
  ##
  $%$ ! ! !   $$ & !   downloaded from: http:///
  10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2006 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, q1: l = 0.26mh, r g = 25 ? , i as = 5.1a; q2: l = 0.24mh, r g = 25 ? , i as = 7.8a.  pulse width 400s; duty cycle 2%.  when mounted on 1 inch square copper board.   
   & 
  330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) n otes: 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters(inches). 3 . outline conforms to eia-481 & eia-541. so-8 tape and reel dimensions are shown in milimeters (inches) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7902

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X